238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )
238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is
238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )
238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is
238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )
238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is
238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )
238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is
238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )
238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is