05. Electronic Configuration and Shape of Orbital's
Structure of Atom

238850 The first emission line on hydrogen atomic spectrum in the Balmer series appears at $(R=$ Rydberg constant):
#[Qdiff: Hard, QCat: Numerical Based, examname: AP-EAMCET (Medical), 2006
, AP EAMCET (Medical) -1998
, AP-EAMCET (Engg.) -1998]#

1 $\frac{5 \mathrm{R}}{36} \mathrm{~cm}^{-1}$
2 $\frac{3 R}{4} \mathrm{~cm}^{-1}$
3 $\frac{7 \mathrm{R}}{144} \mathrm{~cm}^{-1}$
4 $\frac{9 \mathrm{R}}{400} \mathrm{~cm}^{-1}$
Structure of Atom

238858 The electrons are more likely to be found

1 in the region a and $\mathrm{c}$
2 in the region a and $\mathrm{b}$
3 only in the region a
4 only in the region c
Structure of Atom

238859 The frequency of light emitted for the transition $n=4$ to $n=2$ of $\mathrm{He}^{+}$is equal to the transition in $\mathrm{H}$ atom corresponding to which of the following?

1 $\mathrm{n}=3$ to $\mathrm{n}=1$
2 $\mathrm{n}=2$ to $\mathrm{n}=1$
3 $\mathrm{n}=3$ to $\mathrm{n}=2$
4 $\mathrm{n}=4$ to $\mathrm{n}=3$
Structure of Atom

238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )

1 $1.214 \times 10^{-7} \mathrm{~m}$
2 $2.816 \times 10^{-7} \mathrm{~m}$
3 $6.500 \times 10^{-7} \mathrm{~m}$
4 $8.500 \times 10^{-7} \mathrm{~m}$
Structure of Atom

238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is

1 $27: 5$
2 $5: 4$
3 $9: 4$
4 $4: 1$
Structure of Atom

238850 The first emission line on hydrogen atomic spectrum in the Balmer series appears at $(R=$ Rydberg constant):
#[Qdiff: Hard, QCat: Numerical Based, examname: AP-EAMCET (Medical), 2006
, AP EAMCET (Medical) -1998
, AP-EAMCET (Engg.) -1998]#

1 $\frac{5 \mathrm{R}}{36} \mathrm{~cm}^{-1}$
2 $\frac{3 R}{4} \mathrm{~cm}^{-1}$
3 $\frac{7 \mathrm{R}}{144} \mathrm{~cm}^{-1}$
4 $\frac{9 \mathrm{R}}{400} \mathrm{~cm}^{-1}$
Structure of Atom

238858 The electrons are more likely to be found

1 in the region a and $\mathrm{c}$
2 in the region a and $\mathrm{b}$
3 only in the region a
4 only in the region c
Structure of Atom

238859 The frequency of light emitted for the transition $n=4$ to $n=2$ of $\mathrm{He}^{+}$is equal to the transition in $\mathrm{H}$ atom corresponding to which of the following?

1 $\mathrm{n}=3$ to $\mathrm{n}=1$
2 $\mathrm{n}=2$ to $\mathrm{n}=1$
3 $\mathrm{n}=3$ to $\mathrm{n}=2$
4 $\mathrm{n}=4$ to $\mathrm{n}=3$
Structure of Atom

238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )

1 $1.214 \times 10^{-7} \mathrm{~m}$
2 $2.816 \times 10^{-7} \mathrm{~m}$
3 $6.500 \times 10^{-7} \mathrm{~m}$
4 $8.500 \times 10^{-7} \mathrm{~m}$
Structure of Atom

238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is

1 $27: 5$
2 $5: 4$
3 $9: 4$
4 $4: 1$
Structure of Atom

238850 The first emission line on hydrogen atomic spectrum in the Balmer series appears at $(R=$ Rydberg constant):
#[Qdiff: Hard, QCat: Numerical Based, examname: AP-EAMCET (Medical), 2006
, AP EAMCET (Medical) -1998
, AP-EAMCET (Engg.) -1998]#

1 $\frac{5 \mathrm{R}}{36} \mathrm{~cm}^{-1}$
2 $\frac{3 R}{4} \mathrm{~cm}^{-1}$
3 $\frac{7 \mathrm{R}}{144} \mathrm{~cm}^{-1}$
4 $\frac{9 \mathrm{R}}{400} \mathrm{~cm}^{-1}$
Structure of Atom

238858 The electrons are more likely to be found

1 in the region a and $\mathrm{c}$
2 in the region a and $\mathrm{b}$
3 only in the region a
4 only in the region c
Structure of Atom

238859 The frequency of light emitted for the transition $n=4$ to $n=2$ of $\mathrm{He}^{+}$is equal to the transition in $\mathrm{H}$ atom corresponding to which of the following?

1 $\mathrm{n}=3$ to $\mathrm{n}=1$
2 $\mathrm{n}=2$ to $\mathrm{n}=1$
3 $\mathrm{n}=3$ to $\mathrm{n}=2$
4 $\mathrm{n}=4$ to $\mathrm{n}=3$
Structure of Atom

238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )

1 $1.214 \times 10^{-7} \mathrm{~m}$
2 $2.816 \times 10^{-7} \mathrm{~m}$
3 $6.500 \times 10^{-7} \mathrm{~m}$
4 $8.500 \times 10^{-7} \mathrm{~m}$
Structure of Atom

238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is

1 $27: 5$
2 $5: 4$
3 $9: 4$
4 $4: 1$
Structure of Atom

238850 The first emission line on hydrogen atomic spectrum in the Balmer series appears at $(R=$ Rydberg constant):
#[Qdiff: Hard, QCat: Numerical Based, examname: AP-EAMCET (Medical), 2006
, AP EAMCET (Medical) -1998
, AP-EAMCET (Engg.) -1998]#

1 $\frac{5 \mathrm{R}}{36} \mathrm{~cm}^{-1}$
2 $\frac{3 R}{4} \mathrm{~cm}^{-1}$
3 $\frac{7 \mathrm{R}}{144} \mathrm{~cm}^{-1}$
4 $\frac{9 \mathrm{R}}{400} \mathrm{~cm}^{-1}$
Structure of Atom

238858 The electrons are more likely to be found

1 in the region a and $\mathrm{c}$
2 in the region a and $\mathrm{b}$
3 only in the region a
4 only in the region c
Structure of Atom

238859 The frequency of light emitted for the transition $n=4$ to $n=2$ of $\mathrm{He}^{+}$is equal to the transition in $\mathrm{H}$ atom corresponding to which of the following?

1 $\mathrm{n}=3$ to $\mathrm{n}=1$
2 $\mathrm{n}=2$ to $\mathrm{n}=1$
3 $\mathrm{n}=3$ to $\mathrm{n}=2$
4 $\mathrm{n}=4$ to $\mathrm{n}=3$
Structure of Atom

238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )

1 $1.214 \times 10^{-7} \mathrm{~m}$
2 $2.816 \times 10^{-7} \mathrm{~m}$
3 $6.500 \times 10^{-7} \mathrm{~m}$
4 $8.500 \times 10^{-7} \mathrm{~m}$
Structure of Atom

238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is

1 $27: 5$
2 $5: 4$
3 $9: 4$
4 $4: 1$
Structure of Atom

238850 The first emission line on hydrogen atomic spectrum in the Balmer series appears at $(R=$ Rydberg constant):
#[Qdiff: Hard, QCat: Numerical Based, examname: AP-EAMCET (Medical), 2006
, AP EAMCET (Medical) -1998
, AP-EAMCET (Engg.) -1998]#

1 $\frac{5 \mathrm{R}}{36} \mathrm{~cm}^{-1}$
2 $\frac{3 R}{4} \mathrm{~cm}^{-1}$
3 $\frac{7 \mathrm{R}}{144} \mathrm{~cm}^{-1}$
4 $\frac{9 \mathrm{R}}{400} \mathrm{~cm}^{-1}$
Structure of Atom

238858 The electrons are more likely to be found

1 in the region a and $\mathrm{c}$
2 in the region a and $\mathrm{b}$
3 only in the region a
4 only in the region c
Structure of Atom

238859 The frequency of light emitted for the transition $n=4$ to $n=2$ of $\mathrm{He}^{+}$is equal to the transition in $\mathrm{H}$ atom corresponding to which of the following?

1 $\mathrm{n}=3$ to $\mathrm{n}=1$
2 $\mathrm{n}=2$ to $\mathrm{n}=1$
3 $\mathrm{n}=3$ to $\mathrm{n}=2$
4 $\mathrm{n}=4$ to $\mathrm{n}=3$
Structure of Atom

238860 Energy of an electron is given by $E=-2.178 \times$ $10^{-18} \mathrm{~J}\left(\frac{Z^2}{n^2}\right)$. Wavelength of light required to excite an electron in an hydrogen atom from level $n=1$ to $n=2$ will be $\left(h=6.62 \times 10^{-34}\right) \mathrm{Js}$ and $\mathrm{c}=3.0 \times 10^8 \mathrm{~ms}^{-1}$ )

1 $1.214 \times 10^{-7} \mathrm{~m}$
2 $2.816 \times 10^{-7} \mathrm{~m}$
3 $6.500 \times 10^{-7} \mathrm{~m}$
4 $8.500 \times 10^{-7} \mathrm{~m}$
Structure of Atom

238861 For any given series of spectral lines of atomic hydrogen, let $\Delta \bar{v}=\bar{v}_{\max }-\bar{v}_{\min }$ be the difference in maximum and minimum frequencies in $\mathrm{cm}^{-1}$. The ratio $\Delta \bar{v}_{\text {Lyman }} / \Delta \overline{\mathrm{v}}_{\text {Balmer }}$ is

1 $27: 5$
2 $5: 4$
3 $9: 4$
4 $4: 1$