05. Electronic Configuration and Shape of Orbital's
Structure of Atom

239097 The total number of electrons that can be accommodated in all the orbitals having principal quantum number 2 and azimuthal quantum number 1 are

1 2
2 4
3 6
4 8
Structure of Atom

239113 Which of the following electron has minimum energy?

1 $\mathrm{n}=4, l=0 . \mathrm{m}=0 . \mathrm{s}=+\frac{1}{2}$
2 $\mathrm{n}=4, l=1 . \mathrm{m}= \pm 1 . \mathrm{s}=+\frac{1}{2}$
3 $\mathrm{n}=5, l=0 . \mathrm{m}=0 . \mathrm{s}=+\frac{1}{2}$
4 $\mathrm{n}=3, l=2 \cdot \mathrm{m}=-2 . \mathrm{s}=+\frac{1}{2}$
Structure of Atom

239121 If radius of second Bohr orbit of the $\mathrm{He}^{+}$ion is $105.8 \mathrm{pm}$, what is the radius of third Bohr orbit of $\mathbf{L i}^{2+}$ ion?

1 $158.7 \stackrel{\AA}{\AA}$
2 $158.7 \mathrm{pm}$
3 $15.87 \mathrm{pm}$
4 $1.587 \mathrm{pm}$
Structure of Atom

239122 If the radius of the $3^{\text {rd }}$ Bohr's orbit of hydrogen atom is $r_3$ and the radius of $4^{\text {th }}$ Bohr's orbit is $r_4$. Then:

1 $r_4=\frac{9}{16} r_3$
2 $r_4=\frac{16}{9} r_3$
3 $r_4=\frac{3}{4} r_3$
4 $\mathrm{r}_4=\frac{4}{3} \mathrm{r}_3$
Structure of Atom

239097 The total number of electrons that can be accommodated in all the orbitals having principal quantum number 2 and azimuthal quantum number 1 are

1 2
2 4
3 6
4 8
Structure of Atom

239113 Which of the following electron has minimum energy?

1 $\mathrm{n}=4, l=0 . \mathrm{m}=0 . \mathrm{s}=+\frac{1}{2}$
2 $\mathrm{n}=4, l=1 . \mathrm{m}= \pm 1 . \mathrm{s}=+\frac{1}{2}$
3 $\mathrm{n}=5, l=0 . \mathrm{m}=0 . \mathrm{s}=+\frac{1}{2}$
4 $\mathrm{n}=3, l=2 \cdot \mathrm{m}=-2 . \mathrm{s}=+\frac{1}{2}$
Structure of Atom

239121 If radius of second Bohr orbit of the $\mathrm{He}^{+}$ion is $105.8 \mathrm{pm}$, what is the radius of third Bohr orbit of $\mathbf{L i}^{2+}$ ion?

1 $158.7 \stackrel{\AA}{\AA}$
2 $158.7 \mathrm{pm}$
3 $15.87 \mathrm{pm}$
4 $1.587 \mathrm{pm}$
Structure of Atom

239122 If the radius of the $3^{\text {rd }}$ Bohr's orbit of hydrogen atom is $r_3$ and the radius of $4^{\text {th }}$ Bohr's orbit is $r_4$. Then:

1 $r_4=\frac{9}{16} r_3$
2 $r_4=\frac{16}{9} r_3$
3 $r_4=\frac{3}{4} r_3$
4 $\mathrm{r}_4=\frac{4}{3} \mathrm{r}_3$
Structure of Atom

239097 The total number of electrons that can be accommodated in all the orbitals having principal quantum number 2 and azimuthal quantum number 1 are

1 2
2 4
3 6
4 8
Structure of Atom

239113 Which of the following electron has minimum energy?

1 $\mathrm{n}=4, l=0 . \mathrm{m}=0 . \mathrm{s}=+\frac{1}{2}$
2 $\mathrm{n}=4, l=1 . \mathrm{m}= \pm 1 . \mathrm{s}=+\frac{1}{2}$
3 $\mathrm{n}=5, l=0 . \mathrm{m}=0 . \mathrm{s}=+\frac{1}{2}$
4 $\mathrm{n}=3, l=2 \cdot \mathrm{m}=-2 . \mathrm{s}=+\frac{1}{2}$
Structure of Atom

239121 If radius of second Bohr orbit of the $\mathrm{He}^{+}$ion is $105.8 \mathrm{pm}$, what is the radius of third Bohr orbit of $\mathbf{L i}^{2+}$ ion?

1 $158.7 \stackrel{\AA}{\AA}$
2 $158.7 \mathrm{pm}$
3 $15.87 \mathrm{pm}$
4 $1.587 \mathrm{pm}$
Structure of Atom

239122 If the radius of the $3^{\text {rd }}$ Bohr's orbit of hydrogen atom is $r_3$ and the radius of $4^{\text {th }}$ Bohr's orbit is $r_4$. Then:

1 $r_4=\frac{9}{16} r_3$
2 $r_4=\frac{16}{9} r_3$
3 $r_4=\frac{3}{4} r_3$
4 $\mathrm{r}_4=\frac{4}{3} \mathrm{r}_3$
Structure of Atom

239097 The total number of electrons that can be accommodated in all the orbitals having principal quantum number 2 and azimuthal quantum number 1 are

1 2
2 4
3 6
4 8
Structure of Atom

239113 Which of the following electron has minimum energy?

1 $\mathrm{n}=4, l=0 . \mathrm{m}=0 . \mathrm{s}=+\frac{1}{2}$
2 $\mathrm{n}=4, l=1 . \mathrm{m}= \pm 1 . \mathrm{s}=+\frac{1}{2}$
3 $\mathrm{n}=5, l=0 . \mathrm{m}=0 . \mathrm{s}=+\frac{1}{2}$
4 $\mathrm{n}=3, l=2 \cdot \mathrm{m}=-2 . \mathrm{s}=+\frac{1}{2}$
Structure of Atom

239121 If radius of second Bohr orbit of the $\mathrm{He}^{+}$ion is $105.8 \mathrm{pm}$, what is the radius of third Bohr orbit of $\mathbf{L i}^{2+}$ ion?

1 $158.7 \stackrel{\AA}{\AA}$
2 $158.7 \mathrm{pm}$
3 $15.87 \mathrm{pm}$
4 $1.587 \mathrm{pm}$
Structure of Atom

239122 If the radius of the $3^{\text {rd }}$ Bohr's orbit of hydrogen atom is $r_3$ and the radius of $4^{\text {th }}$ Bohr's orbit is $r_4$. Then:

1 $r_4=\frac{9}{16} r_3$
2 $r_4=\frac{16}{9} r_3$
3 $r_4=\frac{3}{4} r_3$
4 $\mathrm{r}_4=\frac{4}{3} \mathrm{r}_3$