Structure of Atom
238718
What is the wave number of $4^{\text {th }}$ line in Balmer series of hydrogen spectrum? $\left(R=1,09,677 \mathrm{~cm}^{-1}\right)$
1 $24,630 \mathrm{~cm}^{-1}$
2 $24,360 \mathrm{~cm}^{-1}$
3 $24,730 \mathrm{~cm}^{-1}$
4 $24,372 \mathrm{~cm}^{-1}$
Explanation:
: We know that,
$\bar{v}=\mathrm{R}\left(\frac{1}{\mathrm{n}_1^2}-\frac{1}{\mathrm{n}_2^2}\right)$
Where, $\bar{v}=$ Wave number
$\mathrm{R}=$ Rydberg constant
$4^{\text {th }}$ line in Balmer series that means-
$\begin{array}{ll}
& \mathrm{n}_1=2, \quad \mathrm{n}_2=6 \\
\therefore & \bar{v}=1,09,677\left(\frac{1}{2^2}-\frac{1}{6^2}\right) \mathrm{cm}^{-1} \\
& \bar{v}=1,09,677\left(\frac{1}{4}-\frac{1}{36}\right) \mathrm{cm}^{-1} \\
\text { or } & \bar{v}=24372 \mathrm{~cm}^{-1}
\end{array}$