02. Dual Nature of Electron
Structure of Atom

238685 What is the approximate wavelength in $\AA$ of a photon having energy $2 \mathrm{eV}$ ?
[Planck's constant $\left.=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right]$

1 6200
2 5100
3 4600
4 3900
Structure of Atom

238686 The longest wavelength present in Balmer series lines is
[Given Rydberg constant $=1.097 \times 10^7 \mathrm{~m}^{-1}$ ]

1 $640 \mathrm{~nm}$
2 $656 \mathrm{~nm}$
3 $662 \mathrm{~nm}$
4 $670 \mathrm{~nm}$
Structure of Atom

238687 The energy of an electromagnetic radiation is $19.875 \times 10^{-13}$ erg. What is its wave number in $\mathrm{cm}^{-1}$ ? $\left(\mathrm{h}=6.625 \times 10^{-27}\right.$ erg-s; $\left.=\mathrm{c}=3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}\right)$

1 1000
2 $10^6$
3 100
4 10,000
Structure of Atom

238689 The energy of a photon is $3 \times 10^{-12}$ erg. What is its wavelength in $\mathrm{nm}$ ? $\left(h=6.62 \times 10^{-27}\right.$ erg-s, $\left.c=3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}\right)$

1 662
2 1324
3 66.2
4 6.62
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Structure of Atom

238685 What is the approximate wavelength in $\AA$ of a photon having energy $2 \mathrm{eV}$ ?
[Planck's constant $\left.=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right]$

1 6200
2 5100
3 4600
4 3900
Structure of Atom

238686 The longest wavelength present in Balmer series lines is
[Given Rydberg constant $=1.097 \times 10^7 \mathrm{~m}^{-1}$ ]

1 $640 \mathrm{~nm}$
2 $656 \mathrm{~nm}$
3 $662 \mathrm{~nm}$
4 $670 \mathrm{~nm}$
Structure of Atom

238687 The energy of an electromagnetic radiation is $19.875 \times 10^{-13}$ erg. What is its wave number in $\mathrm{cm}^{-1}$ ? $\left(\mathrm{h}=6.625 \times 10^{-27}\right.$ erg-s; $\left.=\mathrm{c}=3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}\right)$

1 1000
2 $10^6$
3 100
4 10,000
Structure of Atom

238689 The energy of a photon is $3 \times 10^{-12}$ erg. What is its wavelength in $\mathrm{nm}$ ? $\left(h=6.62 \times 10^{-27}\right.$ erg-s, $\left.c=3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}\right)$

1 662
2 1324
3 66.2
4 6.62
Structure of Atom

238685 What is the approximate wavelength in $\AA$ of a photon having energy $2 \mathrm{eV}$ ?
[Planck's constant $\left.=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right]$

1 6200
2 5100
3 4600
4 3900
Structure of Atom

238686 The longest wavelength present in Balmer series lines is
[Given Rydberg constant $=1.097 \times 10^7 \mathrm{~m}^{-1}$ ]

1 $640 \mathrm{~nm}$
2 $656 \mathrm{~nm}$
3 $662 \mathrm{~nm}$
4 $670 \mathrm{~nm}$
Structure of Atom

238687 The energy of an electromagnetic radiation is $19.875 \times 10^{-13}$ erg. What is its wave number in $\mathrm{cm}^{-1}$ ? $\left(\mathrm{h}=6.625 \times 10^{-27}\right.$ erg-s; $\left.=\mathrm{c}=3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}\right)$

1 1000
2 $10^6$
3 100
4 10,000
Structure of Atom

238689 The energy of a photon is $3 \times 10^{-12}$ erg. What is its wavelength in $\mathrm{nm}$ ? $\left(h=6.62 \times 10^{-27}\right.$ erg-s, $\left.c=3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}\right)$

1 662
2 1324
3 66.2
4 6.62
Structure of Atom

238685 What is the approximate wavelength in $\AA$ of a photon having energy $2 \mathrm{eV}$ ?
[Planck's constant $\left.=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right]$

1 6200
2 5100
3 4600
4 3900
Structure of Atom

238686 The longest wavelength present in Balmer series lines is
[Given Rydberg constant $=1.097 \times 10^7 \mathrm{~m}^{-1}$ ]

1 $640 \mathrm{~nm}$
2 $656 \mathrm{~nm}$
3 $662 \mathrm{~nm}$
4 $670 \mathrm{~nm}$
Structure of Atom

238687 The energy of an electromagnetic radiation is $19.875 \times 10^{-13}$ erg. What is its wave number in $\mathrm{cm}^{-1}$ ? $\left(\mathrm{h}=6.625 \times 10^{-27}\right.$ erg-s; $\left.=\mathrm{c}=3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}\right)$

1 1000
2 $10^6$
3 100
4 10,000
Structure of Atom

238689 The energy of a photon is $3 \times 10^{-12}$ erg. What is its wavelength in $\mathrm{nm}$ ? $\left(h=6.62 \times 10^{-27}\right.$ erg-s, $\left.c=3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}\right)$

1 662
2 1324
3 66.2
4 6.62