\[\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}\]
\[\nabla \cdot \vec{B} = 0\]
\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\]
\[\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}\]
Properties & Key Points:
- Maxwell's equations describe the behavior of electric and magnetic fields and their interactions with matter.
- \( \vec{E} \): Electric field vector.
- \( \vec{B} \): Magnetic field vector.
- \( \rho \): Charge density.
- \( \vec{J} \): Current density.
- \( \epsilon_0 \): Permittivity of free space.
- \( \mu_0 \): Permeability of free space.