ELECTROSTATIC POTENTIALS and CAPACITANCE
Print
Electrostatic Potential
\[ V = k_e \frac{q}{r} \]
Properties & Key Points:
\( V \)
: Electrostatic potential.
\( k_e \)
: Coulomb's constant (\( k_e = 9 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)).
\( q \)
: Point charge.
\( r \)
: Distance from the point charge.
Electrostatic Potential Energy
\[ U = k_e \frac{q_1 q_2}{r} \]
Properties & Key Points:
\( U \)
: Electrostatic potential energy.
\( k_e \)
: Coulomb's constant.
\( q_1, q_2 \)
: Charges involved.
\( r \)
: Distance between the charges.
Equipotential Surface
An equipotential surface is a surface where the
electric potential
is the same at every point on the surface.
Relation between Electric Field and Electric Potential
\[ E = -\frac{dV}{dr} \]
Properties & Key Points:
\( E \)
: Electric field.
\( V \)
: Electric potential.
\( r \)
: Distance.
Capacitance
\[ C = \frac{Q}{V} \]
Properties & Key Points:
\( C \)
: Capacitance.
\( Q \)
: Charge stored on the capacitor.
\( V \)
: Potential difference across the plates.
Capacitance of a Parallel Plate Capacitor
\[ C = \epsilon_0 \frac{A}{d} \]
Properties & Key Points:
\( C \)
: Capacitance.
\( \epsilon_0 \)
: Permittivity of free space (\( \epsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2 / \text{N} \cdot \text{m}^2 \)).
\( A \)
: Area of each plate.
\( d \)
: Distance between the plates.
Energy Stored in a Capacitor
\[ U = \frac{1}{2} C V^2 \]
Properties & Key Points:
\( U \)
: Energy stored in the capacitor.
\( C \)
: Capacitance.
\( V \)
: Potential difference across the plates.
Dielectric Constant
\[ C = C_0 \kappa \]
Properties & Key Points:
\( C \)
: Capacitance with dielectric.
\( C_0 \)
: Capacitance without dielectric.
\( \kappa \)
: Dielectric constant.
Capacitance of a Spherical Capacitor
\[ C = 4 \pi \epsilon_0 \frac{r_1 r_2}{r_2 - r_1} \]
Properties & Key Points:
\( C \)
: Capacitance.
\( \epsilon_0 \)
: Permittivity of free space.
\( r_1, r_2 \)
: Inner and outer radii of the spherical shells.
Share on WhatsApp
Share on Telegram
Copy Link